TEXT SEARCHABLE DOCUMENT

237911 Shaughnessy No.

Completed: Revised:

Feb 15, 1989

by by

M. Roberts

EEB CHEMICAL PROFILE Pirimiphos-methyl

Actellic 5E

100. MINIMUM REQUIREMENTS:

Species	Test Type	Results	Author, Date	Number Category
SECT. 158.145 WILI	DLIFE AND	AQUATIC ORGANISI	MS	
Avian and Mammalia 71-1 Avian Acute Oral	an Testing Technical	1516 MS/Kg	Ross et 1979	413110-01 Invalid
Japanese quail Coturnix coturnix	Technical	140 mg/kg	Gage, 1971	097679 Invalid
Pigeon (species unknown) Greenfinch (species unknown)	Technical Technical	<800 mg/kg 200-400 mg/kg	Gage, 1971 Gage, 1972	097679 Invalid 097679 Invalid
71-2 Avian Dietary				
Mallard duck Anas platyrhynchos	Technical	633 (453-883) ppm	Finc, 1974	09 7 679 Core
Bobwhite quail Colinus virginianus	Technical	207 (106-407) ppm	Fick, 1974	0976\$9 Core
Aquatic Organism Te				
72-2 Freshwater Fish				
Rainbow trout Salmo gairdneri	Technical (88.9%)	0.404 (0.360446) mg/l	Hill, 1978	0976789 Core
Rainbow trout Salmo gairdneri	YF6522A ¹	1.2 (0.92-1.5) ppm	Hill, 1975	097679 Supplemental ²

Bluegill sunfish Lepomis macrochirus	YF6522A1	2.9 (2.6-3.1) ppm	Hill, 1978	097679	Supplemental ²
Fathead minnow Pimephales promelus	Technical (88.9%)	2.5 (2.4-2.7) ppm	Hill, 1988	097679	Core
72-1 Freshwater Invertebrates					
Daphnia magna	Technical (99.5%)	0.21 (0.15-0.31) μg/l	Evered, 1976	097679	Core
Daphnia magna	50% EC	0.11 (0.08-0.15) μg/l	Evered, 1976	097679	Supplemental
141-1 Beneficial Insects				1	
Honey bee Apis melifera	Technical	0.39 μ g/bee contact (n=2) 0.36 μ g/bee oral (n=1)	Stevenson, 1978	05001991	Core

^{1. &}quot;According to the registrant, YF6522A is the name for a formulation very similar to Actellic 5E", Natala (1983).

- 101. General Toxicology (references for the Toxicology Branch):
- 102. Physical and Chemical Properties:
- 102.1 Chemical name: 0-[2-(diethylamino)-6-methyl-4-pyrimidinyl0,0-dimethyl phosphorothiate
- 102.2 Empirical formula:
- 102.3 Structural formula:
- 102.4 Common name: Pirimophos.

Producer of technical product-ICI Americas Inc. Agricultural Chemicals Division Wilmington, DE 19897

102.5 Trade name- Actellic 5E.

Producer of formulated product - same.

^{2. &}quot;Although originally validated as Core, these studies should more properly be categorized as supplemental and repairable to Core should there eve be a requirement for a study performed on the formulated product", Natala (1985).

102.6 Chemical and physical properties:

Molecular weightPhysical state- liquid
Color- pale yellow
Odor- strong, unpleasant smell
Melting pointSpecific gravitySolubilityOctanol/water partition coefficientSoil adsorption coefficient K_dVapor pressure-

103. Behavior in the Environment:

"The rate of degradation of Pirimiphos on stored products is usually slow, dependent upon the amount of moisture content of the grain. At a treatment rate of 4 or 8 ppm to stored wheat, only 20% of the chemical was hydrolyzed in eight months (when the moisture content averaged 13%). Up to 86% was hydrolyzed over the same period at an average of 19% moisture content. Grains which are treated with pirimiphos are stored in warehouses where conditions are carefully controlled". (Matheny, 1979).

103.1 Soil:

Pirimiphos degrades to eight, unnamed compounds.

Soil photodegradation-Soil leaching-Soil dissipation-

103.2 Water:

"Pirimiphos is rapidly hydrolyzed in water. At a pH of 6.5 in distilled water the product was rapidly hydrolyzed, with a half life of roughly 3 days" (Matheny, 1979).

103.3 Plant:

103.4 Animal:

"Livestock metabolism and residue studies previously submitted (Acc. No. 097674) are summarized below:

- a) Pirimiphos-methyl is extensively metabolized and excreted by livestock so that residues in meat and milk are very small (0.003 ppm, 0.18 ppm in lactating goats).
- b) From cows, milk contained 0.04 ppm Pirimiphos-methyl (75% of which could be separated from the fat and protein fraction by extraction).
- c) Groups of three cows, fed 0,5,15 and 50 ppm Pirimiphos-methyl did exceed 0.02 ppm in milk samples.
- d) Groups of four pigs fed 0,3,10 and 34 ppm Pirimiphos-methyl for up to 29 days showed no residues in kidney, liver, lung, heart or muscle.
- e) Hens given an equivalent to 4 ppm in the daily diet for 28 days did not exceed 0.04 ppm Pirimiphos-methyl in eggs or 0.3 ppm in muscle.
- f) A groups of three hens fed at an equivalent to 32 ppm in the diet for 7 days resulted in residues of up to 0.15 ppm in eggs and 0.41 ppm in muscle.

- g) Groups of lying hens were maintained at 28 days on diets containing 0,4,12 and 40 ppm Pirimiphos-methyl. At all but the highest level,m residues in eggs were below 0.01 ppm. At the 40 ppm level residues in the egg yolk reached a plateau of 0.03-0.04 ppm after 7 days." (Matheny, 1979).
- 103.5 Estimated Environmental Concentrations: (Scenario, rate, EEC source, date generated, EEC, etc.)
- 104. Uses and Special Concerns: (Major registered uses, field kills, specific concerns etc.)